Zach Meisel

Assistant Professor

of Physics & Astronomy,

Ohio University

About Me

I am an Assistant Professor of Physics and Astronomy at Ohio University. I perform nuclear astrophysics research, based out of OU's Edwards Accelerator Laboratory.

Brief Bio:

My primary research foci are the origin of the elements and the behavior of matter at extreme densities and low temperatures. I also investigate the structural evolution of nuclei, nuclear reactions for intermediate mass nuclides, and the development of nuclear instrumentation and analysis techniques. My primary research methods are low-energy nuclear physics experiments with stable and radioactive ion beams, coupled with astrophysics model calculations using open-source software. I briefly describe my work in general terms in this video. I am a member of the Institute of Nuclear and Particle Physics and am affiliated with the Joint Institute for Nuclear Astrophysics.

I teach undergraduate and graduate courses in the Physics and Astronomy Department at Ohio University, as well as participate in science outreach events as a lecturer and content curator.

CV | Publications


Nuclear astrophysics and experimental low-energy nuclear physics.

Nuclear Physics of Accreting Neutron Stars

Neutron stars that siphon material from binary companions are host to numerous astronomical observables that probe the behavior of high density matter at low temperatures, such as x-ray bursts and quasipersistent transients. My group works to improve our understanding of these events by studying the underlying nuclear physics through laboratory experiments and astrophysics model calculations. Our primary aims are to reduce and remove nuclear physics uncertainties present in predictions of x-ray burst light curves and in the production of and impact of urca cooling nuclides on accreting neutron stars. I briefly describe our reserch in general terms in this video.

Go to research highlights

Nucleosynthesis in the Universe

Though a subject of study for nearly 100 years, the origin of the elements remains an outstanding mystery. My group works to improve the situation by measuring nuclear reactions thought to play a role in element formation at the energies of relevance to astrophysical scenarios and assessing their impact in astrophysics model calculations. Our primary aims are to reduce and remove the substantial uncertainties unknown (α,n) reaction rates contribute to predictions for the production of the as-yet unaccounted-for elements of ~zinc-to-tin in the neutron-rich ν-driven winds of core-collapse supernovae.

Go to research highlights


Undergraduate and graduate physics and astronomy courses and science outreach.

Graduate Courses

Courses taught thus far include PHYS 6751 – Graduate Laboratory: Nuclear and Particle (Fall 2016) and PHYS 7501 –Particles and Nuclei I (Fall 2017). In PHYS 6751 we gained hands-on experience with low-energy nuclear physics laboratory and analysis techniques. In PHYS 7501 we discussed major topics in low-energy nuclear physics, emphasizing connections to contemporary research. In each course an emphasis was also placed on honing effective written and oral communication.

Go to course webpages

Undergraduate Courses

Spring 2017 I taught PHYS 2001 – Introduction to Physics. Our goal was to gain a basic understanding of Newtonian mechanics, waves, and thermodynamics, while avoiding the use of calculus.

Go to course webpages


I have participated in several outreach endeavors in the past, including lecturing for elementary, middle, and high school science camps, and serving as a tour guide for nuclear physics facilities. In the near term, my goal is to start a small summer camp with a nuclear astrophysics focus for beginning high school students.

Go to outreach highlights

Contact Me

204 Edwards Accelerator Laboratory
Ohio University
Athens, Ohio, 45701 USA
Phone: 740-593-1973