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Building light nuclei from neutrons, protons, and pions
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In these lectures I first explain, in a rather basic fashion, the construction of effective
field theories. I then discuss some recent developments in the application of such theories
to two- and three-nucleon systems.
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1 Introduction: what is an effective theory?

An effective theory is a systematic approximation to some underlying dynamics
(which may be known or unknown) that is valid in some specified regime. An
effective theory is not a model, since its systematic character means that, in prin-
ciple, predictions of arbitrary accuracy may be made. However, if this is to be true
then a small parameter, such as the α of quantum electrodynamics, must govern
the systematic approximation scheme. As we shall see here, in many modern effec-
tive theories the expansion parameter is a ratio of two physical scales. For instance,
in effective theories of supersymmetric physics “beyond the standard model” the
ratio would be of p or m, the momentum or mass of a standard model particle, to
MSUSY. In an effective theory for finite-proton-size effects in the hydrogen atom the
small parameter would be rp, the proton size, divided by rb, the Bohr radius. The
smallness of this parameter is then indicative of the domain of validity of the effec-
tive theory (ET). In this sense effective theories, like revolutions, carry the seeds of
their own destruction, since the failure of the expansion to converge is a signal to
the user that he or she is pushing the theory beyond its limits. Within the radius of
convergence of the ET the ET “works” because of the following fundamental tenet:

Phenomena at low energies (or long wavelength) cannot probe de-
tails of the high-energy (or short-distance) structure of particles.

I suspect that most physicists subscribe to this tenet: indeed, if the tenet were not
true, then physics (other than calculations using a “theory of everything”) would
be impossible.

In this first section I will begin by discussing the basic ideas of effective theo-
ries using a few simple examples from undergraduate physics. In this way we will
move from classical effective theories, to classical effective field theories (EFTs), to
quantum effective field theories. Of course, to understand the latter one must be
able to compute quantum-field-theoretic loop graphs, so this requires a little more
education than the standard undergraduate curriculum contains—at least the un-
dergraduate curriculum at American Universities! Nevertheless, I will attempt to
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present the work at a level that is understandable by someone who has completed a
first course on quantum field theory, but has not necessarily yet studied the theory
of regularization and renormalization.

In Section 2 I will begin to focus on the nucleon-nucleon (NN) system. This will
first necessitate some definitions of terms, notation, and so forth. I then move on
to discuss the special issues stemming from the presence of shallow bound states in
the NN problem. After displaying one solution to this difficulty, I will define and
employ an effective field theory which takes into account the presence of shallow
bound states, but other than this only contains neutrons and protons as dynamical
degrees of freedom. I will give examples of the success of this EFT, known as
EFT(π/), in computing (very-)low-energy electromagnetic observables in the NN
system.

The extension of this work to the three-body problem raises some intriguing
problems of renormalization. I will attempt to elucidate these in Section 3, where
I draw on the work of Bedaque, Hammer, and van Kolck, to show how, after some
thought and interesting discoveries, EFT(π/) can be applied to the NNN problem.

Finally, in Section 4 I give a brief tour of results in an effective field theory
with pions. The effective field theory of QCD in which nucleons and pions are the
degrees of freedom is chiral perturbation theory (χPT). We were fortunate to have
one of the founders of χPT, and indeed a pioneer in the field of EFTs, lecturing at
this school. Prof. Leutwyler’s lectures in this volume should be read in conjunction
with the material presented here. Indeed, this article should be regarded as little
more than light reading on the subject of nuclear EFTs. It is very far from being a
thorough review on the topic. The reader who wishes to study the subject in detail
should consult the reviews Ref. [1, 2] which contain much more information than
does this manuscript. These two reviews also contain full references to the original
literature, a job I have not tackled in any systematic way here.

1.1 Some very simple effective theories

1.1.1 Gravity for h < R

One of the simplest effective theories I know is one that is learned by high-school
physics students. It concerns the standard formula for the gravitational potential-
energy difference of an object of mass m which is raised a height h above the Earth’s
surface:

∆U = mgh, (1)

where g is the acceleration due to gravity
Of course from Newton’s Law of Universal Gravitation (itself an effective theory,

valid in the limit of small space-time curvature), we have

∆U = −GMm

rf
+

GMm

ri
, (2)
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for an object whose distance from the Earth’s centre is initially ri and finally rf .
Now, if we write

rf = ri + h, (3)

and assume that ri ≈ R, the radius of the Earth, then

∆U = m
GM

R2

R

R + h
h. (4)

Identifying GM
R2 = g we see that Eq. (1) is only the first term in a series, which

converges as long as h/R < 1:

∆U = mgh
(

1 − h
R + h2

R2 + . . .
)

. (5)

If we try to apply this theory to a satellite in geosynchronous orbit (h # R) the
series will not converge. But for the space shuttle (h ∼ a few hundred km) this
series should converge fairly rapidly. Equation (1) is the first term in the effective
theory expansion (5) for the gravitational potential energy, with that ET being
valid for h < R.

1.1.2 Effective theories in the hydrogen atom

Presumably, the hydrogen atom is ultimately described in terms of string theory,
or some other fundamental theory of physics. Nevertheless, to very good precision,
we can use quantum electrodynamics (QED) as an effective theory to compute
its spectrum. The reason why we can ignore corrections to QED from physics at
the Planck scale when calculating the hydrogen-atom spectrum will become clear
below.

In the case of the hydrogen atom there is an effective theory for QED that is
valid up to corrections suppressed by one power of α = e2/(4π), the fine-structure
constant. That effective theory is known as the Schrödinger equation with the
Coulomb potential. The radial wave function unl(r) obeys the differential equation
1): 5

− 1

2me

d2unl

dr2
+

l(l + 1)

r2
unl(r) −

α

r
unl(r) = Enunl(r). (6)

The solution, for the lowest-energy eigenstate (n = 1; l = 0) is, of course:

u10(r) = N exp(−αmer) = N exp(−r/rb) , (7)

where rb = (αme)−1 ≈ (4 keV)−1 ≈ 0.5 Å, and N is determined by the normaliza-
tion condition. The corresponding eigenvalue is

E10 = − 1

2me

(

1

rb

)2

. (8)

1) Throughout I work in units where h̄ = c = 1.
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The Bohr radius, rb, sets the scale for most phenomena associated with the electron
in the Hydrogen atom. In particular, the typical momentum of the electron is
∼ 1/rb, which means that relativistic corrections to the Schrödinger equation are
suppressed by (merb)−2 = α2, thereby validating the non-relativistic treatment.
Note that if we were discussing muonic hydrogen the energy and distance scales
would be very different, since rµ

b ≈ 1
200re

b.
The Bohr radius is large compared to the size of the proton, rp, and also com-

pared to the scale of internal structure of the electron. One sense in which the
electron has internal structure is that it is dressed by virtual photons. In fact, the
Lamb shift is, in fact, just such an electron-structure effect, so “finite-electron-size”
effects must be considered if very accurate results are desired. If we for the moment
ignore the electron’s internal structure and consider only the internal structure of
the proton we would replace the Coulomb potential −α/r, by the potential gener-
ated by an extended proton:

V (r) = − e2

4π

∫

ρ(r′)d3r′

|r − r′| , (9)

with ρ(r′) the local electric charge density of the proton at the point r′. Now we
make a multipole expansion, in order to obtain:

V (r) = − e2

4πr

∞
∑

n=0

(rp

r

)n
∫

d3r′ ρ(r′)Pn(r̂ · r̂′)
(

r′

rp

)n

for r > rp, (10)

with Pn the nth Legendre polynomial. Here, ρ(r′) only has support for r′ < rp, and
so the integrals are all numbers of order one. Since the solution of the differential
equation (6) is mainly sensitive to r ∼ rb, the expansion parameter here is rp/rb ∼
1 Å/1 fm, and so this series converges rapidly, with it entirely permissible to evaluate
the corrections for the finite size of the proton in perturbation theory. Nevertheless,
an accurate computation requires inclusion of the term of order (rp/rb)2 in this
expansion.

In fact, this term of O((rp/rb)2) is the first correction due to finite-size effects
in Eq. (6). This is easily seen from Eq. (10), since the coefficient of the term of
O(rp/rb) is zero, as long as the proton’s charge distribution is even under parity.
Thus consideration of the scales in the problem alone would lead us to grossly
overestimate the magnitude of the finite-size effect. It is the combination of scales
and symmetry that leads to an accurate estimate of the magnitude of the effects
neglected by assuming that the proton is point-like in Eq. (6). These two principles:

– a ratio of scales generating an expansion parameter,

– symmetries constraining the types of corrections that can appear,

inform the construction of most effective theories.
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1.2 Building a (classical) effective theory: the scattering of light from atoms

Next I want to discuss an example of ET-construction which first appeared in print
in the effective field theory lecture notes of Kaplan [3]. These lecture notes are an
excellent introduction to EFT, and this example provides a great demonstration of
ET construction. Here I have reworked some of the notation, but the basic idea is
as in Ref. [3].

Consider the scattering of low-energy light from an atom. The question we must
answer is: What is the Hamiltonian that describes the interaction of the atom with
the electromagnetic field of the incoming light? To do this, we first consider the
scales in the problem: the energy of the electromagnetic field, ω is assumed small
compared to the spacing of the atomic levels, ∆E, and the inverse size of the atom.
We will assume in turn that all of these scales are much smaller than the mass of
the atom. Using rb to estimate ∆E we have the following hierarchy of scales:

ω % ∆E ∼ 1

mer2
b

% 1

rb
% Matom. (11)

Meanwhile the symmetries of the theory will be electromagnetic gauge invari-
ance [U(1)em], rotational invariance, and Hermitian conjugation/Time reversal.
These symmetries constrain the types of terms that we can write in our Hamilto-
nian. Firstly, the constraint of gauge invariance suggests that it is wise to construct
Hatom out of the quantities E and B, rather than using the four-vector potential
Aµ. Then, secondly, rotational invariance suggests that we employ quantities such
as E2 and E · B in Hatom. However, E · B is odd under time reversal, and so we
cannot write down a term proportional to it in Hatom. Meanwhile, terms such as
∇ · B, and ∇× E may be included in Hatom, but then can be eliminated from the
Hamiltonian using the field equations for the electromagnetic field in the region
around the atom:

∇ · E = 0; ∇ · B = 0; (12)

∇× E = 0; ∇× B = 0. (13)

This leaves us with:

Hatom = a1B
2 + a2E

2 + a3(∂0B
2) + a4(∂0E

2) + a5(E ·B)2 + . . . (14)

In spite of our cleverness in constraining the terms that may appear, we are still
left with infinitely many operators that can contribute to Hatom. How are we to
organize all of these contributions?

Interlude: naive dimensional analysis

The answer lies in the scale hierarchy established in Eq. (11), together with a
simple technique known as naive dimensional analysis (NDA). This works as follows:
consider, for instance, the operator B2. Counting powers of energy/momentum we
see that it carries four powers of energy, which we write as:

[B2] = 4. (15)
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However, Hatom must have dimensions of energy. It follows that a1 and a2 must
each carry three negative powers of energy/momentum:

[a1] = [a2] = −3, (16)

that is to say:

a1, a2 =
1

(some energy scale)3
. (17)

Now we ask what energy scales are present in the problem and so might appear
in the denominator here. The photon energy ω cannot appear in the denominator
since the scale that occurs there should refer to a property of the atom. Any of
the scales r−1

0 , ∆E, or Matom could be involved though. The most conservative
estimate would be that:

a1, a2 ∼ 1

(∆E)3
. (18)

However, very low-energy photons cannot probe the quantum level structure of
the atom: they should interact with the entire atom in an essentially classical way.
Thus, ∆E cannot occur in the denominator of this lowest-dimensional term in the
Hamiltonian, and so we deduce that a1 and a2 must scale with r0, i. e.:

a1, a2 ∼ r3
0 , (19)

where the ∼ usually indicates that the coefficient here could be a 3 or a 1/3 (or a
-3 or a -1/3) but will generally be a number of order one 2). a1 and a2 are in fact
proportional to the electric and magnetic polarizabilities of the atom [4].

Meanwhile, the operators multiplying the coefficients a3 and a4 have dimension
5. Thus, [a3] = [a4] = −4, and so a3 and a4 carry one more energy-scale downstairs
as compared to a1 and a2. Conservatively, we assign the scaling:

a3, a4 ∼ r3
0

∆E
. (20)

Similar estimates can be made for the other terms in Hatom. The key point is that
since B2 and E2 are the lowest dimension operators allowed by the symmetries
and not already constrained by field equations, they will give the dominant effect
in Hatom for low-energy photons. Any higher-order effects will be suppressed by at
least ω/∆E, i. e.:

Hatom = r3
0

[

ã1B
2 + ã2E

2 + O
( ω

∆E

)]

, (21)

where ã1 and ã2 are now dimensionless numbers. It is straightforward to turn this
result into a prediction for the photon-atom cross section. Since [σ] = −2 and the

2) There is a subtlety here: since this is an electromagnetic interaction the argument here suffices
to get the scaling with ω correct, but it does not count powers of αem = 1/137 which is an
additional small parameter in the problem.
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cross section results from squaring the quantum-mechanical amplitude arising from
the Hamiltonian (21) we discover that

σ ∼ ω4r6
0

[

1 + O
( ω

∆E

)]

, (22)

where the ∼ disguises the hard work needed to figure out all the factors of 2, π
and so forth that really go into deriving σ! The strong dependence of σ on ω is, of
course, the reason the sky is blue—as pointed out in Ref. [3] or in Ref. [5], where
the constant of proportionality in Eq. (22) is worked out in detail!

1.3 A classical effective field theory: Fermi electroweak theory

Equation (21) is an effective expression for the classical Hamiltonian that is valid at
long wavelength, or equivalently, for low-energy electromagnetic fields. In general
effective field theories are derived for low energies, although this need not be the
case.

A canonical example of a low-energy effective field theory is Fermi’s electroweak
theory. This is an effective field theory that can be used to compute, say, low-energy
electron-neutrino scattering. The only particles explicitly appearing in this theory
are electrons and neutrinos. By contrast, in the standard model, the electrons and
neutrinos interact by the exchange of W and Z bosons. If we wish to compute the
scattering of neutrinos from electrons we could compute the full standard model
amplitude for diagrams such as Fig. 1 [6]:

A =

(

−ig

2 cos θW

)

(ν̄PLγµν)
i

q2 − M2
Z

(

−ig

2 cos θW

)

(ēγµQe) ; (23)

with:

PL,R = 1
2 (1 ∓ γ5); (24)

Q = (−1 + 2 sin2 θW)PL + 2 sin2 θWPR. (25)

and q = p′ − p being the change in momentum of the neutrino. Relating q2 to
laboratory quantities, we see that:

q2 = −4ElabE
′
lab sin2

(

θlab

2

)

, (26)

where Elab (E′
lab) and θlab are the initial (final) energy and scattering angle of the

neutrino in the lab. system. So, if Elab % MZ, then we can expand the Z-propagator
in Taylor series. The leading term in this series is then:

A = i
√

2GF (ν̄PLγµν) (ēγµQe) , (27)

with:

GF =
g2

4
√

2 cos2 θW

1

M2
Z

=
g2

4
√

2M2
W

. (28)
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